109 research outputs found

    Jet-Tagged Back-Scattering Photons For Quark Gluon Plasma Tomography

    Full text link
    Several sources of direct photons are known to contribute to the total photon yield in high energy nuclear collisions. All of these photons carry characteristic and important information on the initial nuclei or the hot and dense fireball created in the collision. We investigate the possibility to separate photons from back-scattering of high momentum quarks off quark gluon plasma from other sources. Their unique kinematics can be utilized through high energy jet triggers on the away-side. We discuss the basic idea and estimate the feasibility of such a measurement at RHIC and LHC.Comment: Contribution to Hard Probes 2012; 4 pages, 4 figure

    Azimuthal Asymmetry of Direct Photons in High Energy Nuclear Collisions

    Full text link
    We show that a sizeable azimuthal asymmetry, characterized by a coefficient v_2, is to be expected for direct photons produced in non-central high energy nuclear collisions. This signal is generated by photons radiated by jets interacting with the surrounding hot plasma. The anisotropy is out of phase by an angle π/2\pi/2 with respect to that associated with the elliptic anisotropy of hadrons, leading to negative values of v_2. Such an asymmetry, if observed, could be a signature for the presence of a quark gluon plasma and would establish the importance of jet-plasma interactions as a source of electromagnetic radiation.Comment: New title. Final versio

    Measurement of photons via conversion pairs in \sqrt{s_{NN}} = 200 GeV Au+Au collisions with the PHENIX experiment at RHIC

    Get PDF
    Thermal photons can provide information on the temperature of the new state of matter created at RHIC. In the p_T region of 1--3 GeV/c thermal photons are expected to be the dominant direct photon source. Therefore, a possible excess compared to a pure decay photon signal due to a thermal photon contribution should be seen in the double ratio (\gamma/\gamma(\pi^{0}))_{Measured}/(\gamma/\gamma(\pi^{0}))_{Simulated}, if sufficient accuracy can be reached. We present a method to reconstruct direct photons by measuring e^{+}e^{-}--pairs from external photon conversions.Comment: 4 pages, 7 figures. To appear in the proceedings of Hot Quarks 2006: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May 200

    High-pT pi0 Production with Respect to the Reaction Plane Using the PHENIX Detector at RHIC

    Get PDF
    The origin of the azimuthal anisotropy in particle yields at high pT (pT > 5 GeV/c) in RHIC collisions remains an intriguing puzzle. Traditional flow and parton energy loss models have failed to completely explain the large v2 observed at high pT. Measurement of this parameter at high pT will help to gain an understanding of the interplay between flow, recombination and energy loss, and the role they play in the transition from soft to hard physics. Neutral mesons measured in the PHENIX experiment provide an ideal observable for such studies. We present recent measurements of \piz yields with respect to the reaction plane, and discuss the impact current models have on our understanding of these mechanisms.Comment: Contribnution to the proceedings of Hot Quarks 2006, 15-20 May 2006, Villasimius, Sardini

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio

    Direct photons measured by the PHENIX experiment at RHIC

    Get PDF
    Results from the PHENIX experiment at RHIC on direct photon production in p+p, d+Au, and Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. In p+p collisions, direct photon production at high p_T behaves as expected from perturbative QCD calculations. The p+p measurement serves as a baseline for direct photon production in Au+Au collisions. In d+Au collisions, no effects of cold nuclear matter are found within the large uncertainty of the measurement. In Au+Au collisions, the production of high p_T direct photons scales as expected for particle production in hard scatterings. This supports jet quenching models, which attribute the suppression of high p_T hadrons to the energy loss of fast partons in the medium produced in the collision. Low p_T direct photons, measured via e+e- pairs with small invariant mass, are possibly related to the production of thermal direct photons.Comment: 5 pages, 5 figures, Proceedings of the Hot Quarks 2006 Workshop for young scientists on the physics of ultra-relativistic nucleus-nucleus collisions, Villasimius, Sardinia, Italy, May 15--20, 200

    Photon production in relativistic nuclear collisions at SPS and RHIC energies

    Full text link
    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the pseudovector a_1 meson. Calculations that include reactions with strange mesons, hadronic form factors and vector spectral densities consistent with dilepton production, as well as the emission from a quark-gluon plasma and primordial nucleon-nucleon collisions, reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Predictions for the Relativistic Heavy Ion Collider (RHIC) are made.Comment: Work presented at the 26th annual Montreal-Rochester-Syracuse-Toronto conference (MRST 2004) on high energy physics, Montreal, QC, Canada, 12-14 May 2004. 8 pages, 3 figure

    Rate of photon production from hot hadronic matter

    Full text link
    Thermal photon emission rates from hot hadronic matter are studied to order e2g4e^{2}g^{4}, where gg indicates a strong-interaction coupling constant. Radiative decay of mesons, Compton and annihilation processes for hadrons, and bremsstrahlung reactions are all considered. Compared to the standard rates from the literature, one finds two orders of magnitude increase for low photon energies stemming mainly from bremsstrahlung and then a modest increase (factor of 2) for intermediate and high energy photons owing to radiative decays for a variety of mesons and from other reactions involving strangeness. These results could have important consequences for electromagnetic radiation studies at RHIC.Comment: 5 pages LaTeX, 4 Postscript figure
    • …
    corecore